Second order method for solving 3D elasticity equations with complex interfaces
نویسندگان
چکیده
Elastic materials are ubiquitous in nature and indispensable components in man-made devices and equipments. When a device or equipment involves composite or multiple elastic materials, elasticity interface problems come into play. The solution of three dimensional (3D) elasticity interface problems is significantly more difficult than that of elliptic counterparts due to the coupled vector components and cross derivatives in the governing elasticity equation. This work introduces the matched interface and boundary (MIB) method for solving 3D elasticity interface problems. The proposed MIB elasticity interface scheme utilizes fictitious values on irregular grid points near the material interface to replace function values in the discretization so that the elasticity equation can be discretized using the standard finite difference schemes as if there were no material interface. The interface jump conditions are rigorously enforced on the intersecting points between the interface and the mesh lines. Such an enforcement determines the fictitious values. A number of new techniques has been developed to construct efficient MIB elasticity interface schemes for dealing with cross derivative in coupled governing equations. The proposed method is extensively validated over both weak and strong discontinuity of the solution, both piecewise constant and position-dependent material parameters, both smooth and nonsmooth interface geometries, and both small and large contrasts in the Poisson's ratio and shear modulus across the interface. Numerical experiments indicate that the present MIB method is of second order convergence in both L∞ and L2 error norms for handling arbitrarily complex interfaces, including biomolecular surfaces. To our best knowledge, this is the first elasticity interface method that is able to deliver the second convergence for the molecular surfaces of proteins..
منابع مشابه
Stress Analysis of Skew Nanocomposite Plates Based on 3D Elasticity Theory Using Differential Quadrature Method
In this paper, a three dimensional analysis of arbitrary straight-sided quadrilateral nanocomposite plates are investigated. The governing equations are based on three-dimensional elasticity theory which can be used for both thin and thick nanocomposite plates. Although the equations can support all the arbitrary straight-sided quadrilateral plates but as a special case, the numerical results f...
متن کاملSolving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملElasticity Solution Approach for Functionally Graded Spherical Shell with Piezoelectric Properties
Based on elasticity approach, 1D analytical method is adopted in radial direction to analyze spherical shell made of FGPM. The mechanical properties are regulated by volume fraction as a function of radial coordinate. Loading can be internal and external pressures, or electric field. All mechanical and piezoelectric properties except the Poisson’s ratio are assumed to be power functions of radi...
متن کاملThree-dimensional matched interface and boundary (MIB) method for treating geometric singularities
This paper reports the three-dimensional (3D) generalization of our previous 2D higher-order matched interface and boundary (MIB) method for solving elliptic equations with discontinuous coefficients and non-smooth interfaces. New MIB algorithms that make use of two sets of interface jump conditions are proposed to remove the critical acute angle constraint of our earlier MIB scheme for treatin...
متن کاملGeneralized H-differentiability for solving second order linear fuzzy differential equations
In this paper, a new approach for solving the second order fuzzy differential equations (FDE) with fuzzy initial value, under strongly generalized H-differentiability is presented. Solving first order fuzzy differential equations by extending 1-cut solution of the original problem and solving fuzzy integro-differential equations has been investigated by some authors (see for example cite{darabi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of computational physics
دوره 294 شماره
صفحات -
تاریخ انتشار 2015